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Transcriptome analysis reveals dysregulation of
innate immune response genes and neuronal
activity-dependent genes in autism
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Recent studies of genomic variation associated with autism have suggested the existence of

extreme heterogeneity. Large-scale transcriptomics should complement these results to

identify core molecular pathways underlying autism. Here we report results from a large-scale

RNA sequencing effort, utilizing region-matched autism and control brains to identify

neuronal and microglial genes robustly dysregulated in autism cortical brain. Remarkably, we

note that a gene expression module corresponding to M2-activation states in microglia

is negatively correlated with a differentially expressed neuronal module, implicating

dysregulated microglial responses in concert with altered neuronal activity-dependent genes

in autism brains. These observations provide pathways and candidate genes that highlight

the interplay between innate immunity and neuronal activity in the aetiology

of autism.
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A
utism is a neurodevelopmental disorder in which affected
individuals show disruption of the normal course of social
and communicative development, along with restrictive

interests and repetitive behaviours. In the vast majority of cases,
the cause of disease is not known. Despite a strong genetic
component with heritability estimates between 50 and 90%
(refs 1–3), the identification of genes important in disease
susceptibility has progressed slowly, resulting in a limited
understanding of the molecular basis of autism. Environmental
factors underlying disease risk are likewise unclear. This slow
progress can be attributed, in part, to both the extreme
phenotypic heterogeneity and involvement of hundreds of loci
in the disorder4,5.

Recent studies to elucidate the molecular basis of autism have
largely focused on genetic approaches, including both genome-
wide association studies6 and whole-exome sequencing5,7–9, to
identify both inherited and de novo variation contributing to
autism. A major mode of action for genetic variation is through
altered gene expression, so direct analysis of gene expression in a
disease-relevant tissue is a complementary approach to genetic
studies. Despite the extreme genetic heterogeneity observed in
autism, it is possible that common downstream mechanisms may
be altered10. Thus, there has been an effort to use transcriptomics
to identify and dissect molecular pathways that may be altered in
autism spectrum disorder (ASD).

Given low tissue sample availability in autism research, efforts
have focused on assessing gene expression in lymphoblastoid
cell lines or whole blood11–15. However, given the core
neurodevelopment phenotypes associated with autism, there is
little doubt that direct assessment of gene expression in brains
may be critical. Indeed, Voineagu et al. recently utilized co-
expressed gene networks from RNA-Sequencing (RNA-Seq)
carried out in 19 autism brains and 17 controls to identify a set
of co-expressed neuronal genes enriched for known autism
susceptibility genes as well as a set of co-expressed genes enriched
for both immune genes and glial markers10.

In the current study, we present results from the largest RNA
sequencing of autism brains effort to date that allows for new
insights into the aetiology of autism. We find clear differences in
the transcriptome between control and ASD cortical brains.
Using co-expression network analysis, we demonstrate that
autism brains are specifically enriched for ‘activated’ M2
microglial and ‘immune response’ genes. Remarkably, the M2
microglial module is strongly negatively correlated with one of
two differentially expressed neuronal modules, highlighting the
interplay between innate immunity and neuronal activity in the
aetiology of ASD.

Results
Transcriptomes from 104 human brain cortical tissue samples
were resolved using next-generation RNA sequencing technology
at single-gene resolution and through co-expressing gene clusters
or modules. Multiple cortical tissues corresponding to Brodmann
Area 19 (BA19), Brodmann Area 10 (BA10) and Brodmann Area
44 (BA44) were sequenced in 62, 14 and 28 samples, respectively,
resulting in a total of 57 (40 unique individuals) control and 47
(32 unique individuals) autism samples (Supplementary Data 1
and 2, and see ref. 16). Differential gene expression was estimated
between the 57 controls and the 47 cases, with sample collection
site, age, sex, brain region and independent surrogate variables
(ISVs) as fixed effects in a linear mixed regression model
(Supplementary Data 3a). In total, 13,262 genes with at least three
reads per sample across 90% of the samples were tested, and two
transcriptome-wide significant differentially expressed genes
associated with autism were identified (Supplementary Data 4
and Fig. 1a).

The most significant differentially expressed gene was Myelin
And Lymphocyte Protein (MAL; P¼ 2.16� 10� 7, Fig. 1b, and
Supplementary Fig. 1a–c). MAL, along with other myelination
genes, has previously been reported to show altered expression in
patients with psychiatric disorders17. The second differentially
expressed gene was C11orf30 (EMSY; P¼ 3.29� 10� 7, Fig. 1c
and Supplementary Fig. 1d–f). This gene has been implicated in
chromatin modification, DNA repair and transcriptional
regulation, and previous genome-wide association studies have
linked C11orf30 to inflammatory and malignant diseases18,19. We
also performed analyses at the exon level, testing 21,310 exons for
differential exon expression; however, no differences could be
identified in autism cases and controls after correction for
multiple testing (Supplementary Data 5).

Next we asked whether the top differentially expressed genes
from the single-gene analysis shared common pathways or
functional categories. We tested for the enrichment of biological
processes using Gene Ontology (GO) annotations and MSigDB
curated gene sets. No gene-set enrichment with family-wise error
rate (FWER) r0.05 was observed (Supplementary Data 6a–d).

For common genetic variation, altered gene expression is a
major mode of action20,21. We therefore tested whether genes
previously associated with autism through genetic analyses are
enriched for altered gene expression. To identify genes underlying
susceptibility to autism, we utilized a list of expertly curated genes
developed by the Simons Foundation for Autism Research
(SFARI)22. In addition to the SFARI list of genes, we also
integrated genes associated with rare de novo variation (RDNV)
and genes involved in intellectual disability (ID) compiled from
four published whole-exome sequencing studies5,7,8,23 and review
articles24 (Supplementary Data 7). Overall, we find comparable
expression of these genes in autism and control brain tissue
(Supplementary Data 8a,b). Although these gene lists are not
comprehensive and only reflect the current understanding of the
genetic basis of autism, the lack of enrichment for genes known to
harbour genetic signal for autism in altered gene expression
suggests the potential for non-overlapping mechanisms between
genetic and transcriptomic determinants of autism. However, we
do find modest enrichment for a broader set of genes containing
‘brain-critical exons’, which have high gene expression in brain
and low rare burden of rare mutations, and have been proposed
to represent autism candidate genes25 (Supplementary Data 8a).

In addition to the single-gene analyses, we applied weighted
gene correlation network analysis18 (WGCNA) to identify
discrete gene modules based on co-expression between genes.
Considerable overlap was observed in the modules constructed
separately from cases and controls, indicating that overall
organization of transcript co-expression is conserved between
autism and control brains (Supplementary Data 9). Therefore, we
applied WGCNA to construct networks derived from the entire
data set of 104 samples, adjusted for sequencing artefacts, age, sex,
collection site and brain region, identifying 12 co-expressed
modules (Supplementary Data 10 and Fig. 2a). We tested the
association of each module, represented by its corresponding
first principal component or module eigengene (ME), with case–
control status using a linear mixed regression framework
(Supplementary Data 11 and Fig. 2b). Three of the twelve
modules were differentially co-expressed (Po0.005), with mod5
(P¼ 9.64� 10� 4) exceeding the multitest correction threshold
(Ppermutatedo0.002, PBonferronio0.004; Fig. 3a,b). Mod5
comprised 759 genes (Supplementary Fig. 2a) with enrichment
for M2-microglial cell states (Phypergeometric¼ 1.22� 10� 39;
Supplementary Data 12 and Fig. 3c) and the GO term
‘Type I Interferon pathway’ (Phypergeometric¼ 1.19� 10� 20;
Supplementary Data 13e and Fig. 3d). Type I Interferon
responses in the brain are classically attributed to viral
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infections that can produce M1 activation states in microglia26.
Accordingly, mod5 also shows enrichment for GO terms ‘defense
response to virus’ (Phypergeometric¼ 6.83� 10� 17) and ‘cytokine-
mediated signalling pathway’ (Phypergeometric¼ 6.31� 10� 16;
Supplementary Data 13e). In opposition to M1-activated
microglia, M2 responses are responsible for mediating anti-
inflammatory remediation responses to damage caused by viral
infections. M2 microglial cells also secrete brain-derived
neurotrophic factor (BDNF), increase the production of neural
progenitor cells and promote myelination27–29. These data
provide support for a mechanistic connection for viral-infection
hypotheses30 for autism with neural over-growth hypotheses31

through the novel identification of exaggerated M2 activation
states in autism brain tissue.

Voineagu et al. previously reported a co-expression module
dysregulated in autism brains, termed asdM16, enriched in
astrocytes and microglia-expressed genes10. To better understand
the functional implications of asdM16 in autism, we looked
for asdM16 signal enrichment among the modules generated
utilizing our substantially larger data set (Supplementary Data 12
and Fig. 2c). Two modules—mod5 (Phypergeometric¼ 9.3� 10� 59,
described above) and mod7 (Phypergeometric¼ 1.45� 10� 89)—
were enriched for asdM16 signal. However, mod7 is not
differentially expressed with respect to autism (Supplementary
Data 11 and Fig. 2b) and accounts for the astrocyte markers
(Phypergeometric¼ 1.65� 10� 75; Supplementary Data 12), whereas
mod5 is differentially expressed (P¼ 9.64� 10� 4). By
substantially increasing the sample size and number of genes
evaluated, we are able to accurately pinpoint the relevant signal
from the previously reported asdM16 module as coming from
M2-state microglial cells and immunogenic responses (type I
interferon responses; Supplementary Data 13e and Fig. 3d), and
not from astrocytes. To our knowledge, M2 activation state

responses have not previously been attributed to the pathogenesis
of autism.

We also identified three distinct modules (mod1, mod2 and
mod6; Supplementary Fig. 3b–d) enriched for neuronal markers
that contain genes with the shared GO term, ‘synaptic
transmission’, all of which showed enrichment for an additional
co-expression module reported to be dysregulated in autism,
asdM12 (Supplementary Data 12 and 13a,b,f, and Fig. 2c). Two of
the three modules—mod1, downregulated in autism, and mod6,
upregulated in autism—were nominally differentially co-
expressed between the autism and control brain samples
(Po0.005; Supplementary Data 11 and Fig. 2b). Mod1 contains
synaptic transmission genes enriched in GABA-related ion
channel activity, whereas mod6 contains genes enriched in
peptide and hormone signalling (Supplementary Fig. 3).

Previous studies have identified an enrichment of
genetic association signals in genes selectively expressed in
neurons10,25,32,33. Here we find that mod2 was enriched for
both common (Phypergeometric¼ 2.49� 10� 6) and rare classes
of autism genetic variants (Phypergeometric¼ 4.29� 10� 4)
but comparably expressed between cases and controls
(Supplementary Data 11 and 12, and Fig. 2d). That neuronal
genes genetically associated with autism do not appear to have
altered expression (mod2), coupled with the observation that
neuronal genes without genetic signal do appear to be
differentially expressed (mod1 and mod6), suggests that autism-
associated differentially expressed genes are separable from
genetic determinants of autism. Corroborating this idea, a
recent study of gene networks in coronary artery disease has
shown that genes at the centre of the networks, referred to as ‘key
drivers’, were largely not genome-wide association study signal
genes, suggesting that key regulatory genes may not harbour
common inherited variation because of natural selection34.
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Figure 1 | Single-gene expression analysis identifies two transcriptome-wide significantly differentially expressed genes between autism and control

brains. (a) Manhattan plot for 13,262 expressed genes. The threshold for transcriptome-wide significance was calculated based on 400 permutations

(Po4.76� 10� 7) and is indicated by the dotted grey line. (b,c) Boxplot of gene expression in 57 controls (grey) and 47 cases (red), indicating a 1.2-fold

increase for MAL and a 0.6-fold decrease for C11orf30 in cases relative to controls.
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Direct evidence for the role of Fragile X mental retardation
protein (FMRP) in autism has been provided by Darnell et al.
These authors reported that many of the protein-interacting
partners of FMRP harbour ASD-associated common variants35.
Similarly, Iossifov and colleagues reported an enrichment of ASD
RDNVs in FMRP targets5. We therefore investigated whether
FMRP targets were enriched in any of the co-expression modules
detected in autism brain tissue. We report a 20% enrichment of
FMRP targets in one of the differentially co-expressed neuronal
modules, mod1 (Phypergeometric¼ 1.80� 10� 10), and the non-
differentially co-expressed neuronal module, mod2, which
showed a substantially stronger enrichment of 39% of FMRP
targets (Phypergeometric¼ 7.38� 10� 110; Supplementary Data 12
and Fig. 2e).

Recently, Steinberg et al. organized the FMRP target genes into
distinct temporally expressed subpopulations affected by different
classes of genetic variation associated with ASD36. Based on this
classification, we found that mod1 was enriched for FMRP targets
expressed in the synapse during adolescence and adulthood
(Phypergeometric¼ 4.66� 10� 4), whereas mod2 was enriched for
the FMRP targets in the modules that were expressed during
fetal development (Phypergeometric¼ 3.32� 10� 4; Supplementary
Data 12 and Fig. 2f). Thus, we again find evidence that the genetic
signal is stronger in the non-differentially expressed module
(mod2), with a twofold enrichment for FMRP targets compared
with the differentially expressed mod6, whereas no enrichment
was observed for mod1. Incorporating the temporal data leads to
a hypothesis that one important mechanism of action at the
neuronal level is that primary mutations may occur in genes
important in fetal development (captured by mod2), and altered
expression of those genes would not be captured in the current
study, where the youngest individual was 2 years of age. These
mutations may lead to developmental changes reflected in
adolescent and adult expressed genes showing differential
expression between cases and controls (mod1 and mod6).

In this study, we provide transcriptomic evidence for type I
interferon and M2-activation state abnormalities in autism that
may lead to a variety of pathologic and phenotypic consequences.
We further note that there is a strong negative correlation
between two differentially co-expressed modules, mod5 (activated
M2-state microglia genes) and mod1 (synaptic transmission
genes; r¼ � 0.92, Supplementary Data 14). Recently, microglia
have been identified as cells capable of restoring neural function
in the ASD-model MECP2 knockout mice37. We observe, for the
first time, that M2-activation state microglia genes, in particular,
are altered in autism, potentially driven by type I interferon
responses. This process may drive changes in neural progenitor
cell proliferation and connectivity with resultant altered
activity-dependent neural expression profiles in post-natal
development38,39. The linkage of this pathway to autism may
lead to more accurate and predictive models of idiopathic disease
that might contribute to the identification of effective therapeutic
approaches.

Methods
Brain tissue samples. Brain tissue. Frozen brain samples were acquired through
the Autism Tissue Program (http://www.autismbrainnet.com), with samples ori-
ginating from two different sites: the Harvard Brain Tissue Resource Center and
the NICHD Brain and Tissue Bank at the University of Maryland. Tissue was
obtained from post-mortem and written informed consent was obtained from
next-of-kin or a legal guardian. This work was approved by the Institutional
Review Board of the Johns Hopkins Hospital and University of Alabama at Bir-
mingham and was conducted in accordance with institutional guidelines. The brain
samples were dissected to obtain the cerebral cortex Brodmann area (BA) 19,
anterior prefrontal cortex (BA10) and a part of the frontal cortex (BA44). Multiple
cortical tissues corresponding to BA19, BA10 and BA44 were sequenced in 62, 14
and 28 samples, respectively, resulting in a total of 57 (40 unique individuals)
control and 47 (32 unique individuals) autism samples. The average age at time of

death of the 40 control and 32 autism individuals was similar (cases median
age¼ 20 years, controls median age¼ 17 years), and there was no significant dif-
ference in cause of death between the two groups. Supplementary Data 1 contains
the details of the corresponding subject phenotypes and additional characteristics.

RNA library preparation and RNA sequencing. RNA-Seq libraries were prepared
from 50mg of total RNA from post-mortem brain tissue extracted with Trizol
reagent according to the manufacturer’s protocol (Invitrogen). The TruSeq
RNAseq kit (Illumina) was used with minor modifications as follows. Total RNA
pools were subjected to two rounds of hybridization and elution with oligo(dT)
dynabeads (Invitrogen) to obtain purified polyadenylated (polyA) RNA. After
mRNA selection, samples were randomly fragmented to minimize bias at the 30

end of the transcript. First-strand cDNA synthesis was performed using random
primers (Illumina) and SuperScriptII Reverse-Transcriptase (Invitrogen) followed
by second strand cDNA synthesis using RNaseH and DNA polymerase I
(Illumina). Illumina supplied adaptors (TruSeq kit) were ligated to the purified,
end-repaired and 30 adenylated cDNA, and we performed manual 200 bp
size-selection of the final product by gel-excision. The 200-bp cDNA template
molecules were then amplified by PCR to create the final library. Quality control
measures during library amplification included PCR from reactions with no
template, from libraries made with no ligase (hence no adaptors) and finally from
libraries with no adaptor oligonucleotides included in the ligase reaction. In these
cases, the library failed to amplify, thereby ensuring specificity of the expected
product for each run. Each library was evaluated for uniformity on a 2100
Bioanalyzer (Agilent) before sequencing on a single lane of Illumina’s HiSeq 2000
to produce 100 base pair (bp) single-end reads. Each sequencing run included
samples randomized by sex, collection site and case–control status.

Mapping and gene summarization of data from RNA-Seq. The sequenced reads
for each sample were obtained as fastq files for 110 samples. To improve mapping,
reads were trimmed to remove stretches of terminal A or Ts (N¼ 3–12) and
contaminating adaptor sequences using a Python script, ‘cutadapt’ (v1.2.1)40.
The sequenced reads were mapped using Tophat2 (refs 41,42). Only uniquely
mapped reads with a maximum of three mismatches were used to estimate gene
counts. The RNA-Seq reads were mapped to a set of sequences derived from
the Genome Reference Consortium Human build 37 (GRCh37) assembly,
recommended by the 1000 Genomes Project43. Gene expression estimates were
made for approximately 48,260 of the total 62,069 reported Ensembl gene
annotations (GRCh37 or Human release 70), recommended by Kim et al.42,
using the Python script ‘HTSeq-count’ (model type—intersection strict, http://
www-huber.embl.de/users/anders/HTSeq/)44.

Normalization of gene estimates. Subsequent to mapping, the gene count data
were normalized for within and between lane biases (e.g., GC content)
and sequencing depth by methods implemented in Conditional Quantile
Normalization45 and Exploratory Data Analysis and Normalization for RNA-Seq
(EDASeq)46, using the default settings for each method. We present the EDASeq-
normalized data, and for a detailed discussion about the differences between
EDASeq and Conditional Quantile Normalization, see Ellis et al.16.

We assessed summarized values on a per-gene basis, removing gene estimates
for samples whose gene expression values were more than three standard
deviations (s.d.) from the mean expression of each gene (per-gene outlier),
as these outliers are artefactual in origin16.

Quality assessment. Picard (http://picard.sourceforge.net, v1.87) command-line
tools ‘CollectRnaSeqMetrics’ and ‘CollectGcBiasMetrics’ were used to provide
RNA-Seq summary statistics (Supplementary Data 2). Six samples with low gene
coverage (420% of the 48,260 genes had zero coverage) were dropped from all
downstream analyses, resulting in 104 samples. In addition, to detect global sample
outliers because of technical or biological reasons, we used principal component
analysis and identified a subset of 2,582 genes with at least ten reads per sample
using the ‘prcomp’ function in the ‘stats’ package in R (http://www.R-project.org/).
All 104 samples were within three s.d. of the mean of the first six principal
components, which together explained B55% of the variance16.

The RNA-Seq sequencing statistics on all 110 samples are detailed in
Supplementary Data 2.

Single-gene differential expression analysis. After normalization and outlier
removal, ISVs47 were generated on a subset of 2,500 genes with at least ten read
coverage in each sample. Data decomposition was performed on the log2 scale for
the 2,500 genes. ISVs were generated while protecting for case–control status using
the ‘isvaFn’ function in the ‘isva’ package in R. Differential gene analysis was
performed using a subset of 13,262 genes that had at least three reads per sample
across 90% of the samples.

A linear mixed regression framework was utilized to identify differential gene
expression between 57 controls and 47 cases. To remove unwanted sources of
variation while protecting differences because of the primary variable of interest
(case–control status), site of sample collection, age, sex, brain region and ISVs were
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included as fixed effects. In addition, the model included a random intercept term
to account for the correlation of gene expression estimated from multiple brain
regions obtained from the same individual.

Permutation testing was used to estimate the threshold for transcriptome-wide
significant differential expression (EDASeq, 400 permutations, P¼ 4.76� 10� 7).
We reiterate that the samples were obtained from two collection sites, and to
estimate the threshold for transcriptome-wide significant differential expression,
we permutated the case–control status within each site, maintaining the same
phenotype for multiple samples (that is, brain regions) derived from a single
individual.

We assessed the possibility of confounding in the expression of the two
differentially expressed genes by investigating the expression stratified by sample
collection site (Supplementary Fig. 1a,d). The sequencing coverage of MAL was
calculated across the 4 exons and for 21 exons of C11orf30 using ‘coverageBed’
from bedtools48 (Supplementary Fig. 1b,e). We also investigated for the expression
of MAL and C11orf30 during development and across different brain regions from
Brainspan (http://hbatlas.org/pages/hbtd) (Supplementary Fig. 1c,f).

Single-exon differential expression analysis. Exon-level estimates were obtained
using the ‘count.py’ script from DEXSeq49 for each of the 104 samples. Exons with
more than three reads across 90% of all samples were included for analysis. These
21,310 exons were modelled utilizing a linear mixed regression framework to
identify differential exon usage between the 57 controls and the 47 cases. Site of
sample collection, age, sex, brain region and ISVs (generated from the single gene-
level analysis) were included as covariates to account for unknown confounding
factors as fixed effects. In addition, the model included a random intercept term to
account for the correlation of gene expression estimated from multiple brain
regions obtained from the same individual.

Single gene: GO and pathway enrichment analysis. To determine a common
functional relationship among the top differentially expressed genes, we tested for
the enrichment of biological processes using GO annotations (ftp://ftp.ncbi.nlm.
nih.gov/gene/DATA/gene2go.gz). The number of genes differentially expressed at
Po0.05, Po0.01, Po0.001 and Po0.0001 were 1,964, 749, 185 and 50, respec-
tively. For each P value cutoff, we generated 2,000 random gene sets of equal size
(that is, 1,964 for Po0.05) and performed the same enrichment analysis as on the
original data set. Minimum P values for each enrichment analysis were stored. The
0.05 FWER was then calculated to estimate false positives by setting the 100th (out
of 2,000) best P value as the threshold for a true discovery.

We also used an alternate method for pathway enrichment analysis for the
identification of common functional categories represented by GO and curated
gene sets. The pathways include all the pathways in GO and curated gene sets,
which can be downloaded from MsigDB (http://www.broadinstitute.org/gsea/
msigdb/collections.jsp#C1). The P value of each gene was determined from a
linear mixed model. We then mapped these P values to non-negative z-scores(z_i),
where

Pr z4 fz-score fgeneggð Þ¼ P value genef gf g = 2:0 ð1Þ

assuming the P values were two-tailed. Then for each pathway, we calculated the
P value for a one-sided t-test of z_i in the pathway Zz_i not in the pathway.
We refer to this as the ‘pathway enrichment test’.

To account for false positives, we first generated 100 sets of balanced
permutations, where for each permutation, the permuted case and control groups
contain equal number of case and control samples from the original data set. Then,
for each permuted data set, we did the same gene set enrichment test as we did
with the original data and stored the P values for each pathway in each permuted
data set. We then extract the best P value for each permutation, ranked them and
set the 5th best P value as the threshold for a true discovery. This gives us a 0.05
FWER.

We also tested whether the genes associated with the risk of autism and ID were
differentially expressed. Gene lists are in Supplementary Data 7, and details on the
gene lists are provided below. The enrichment of the gene sets categories
in the differentially expressed genes was tested based on the hypergeometric
distribution model. Four lists of differentially expressed genes at P values
o0.001,o0.005,o0.01 ando0.05, with 185, 494, 749 and 1,964 genes,
respectively, were generated. The percentage of genes in each gene-set and P value
corresponding to FWER¼ 0.05 are tabulated in Supplementary Data 8a. We
performed the ‘pathway enrichment test’ using equation 1 that does not rely upon
defining a differentially expressed set of genes, broadly looking for differential
expression (without a P value cut-off) among genetically associated genes
(Supplementary Data 8b). We obtained the P values at FWERo0.05
(100 permutations) as described above.

Artefact corrected data set. For the single-gene differential expression analysis,
we used the ISVs to correct for both technical and biological confounders in the
expression data. For the differential co-expression analysis, we identified various
sequencing artefacts, computed by Picard command-line tools, which were
largely confounding the expression data on the EDASeq-normalized genes
(Supplementary Data 3a). The correlations between the various sequencing

artefacts are provided in Supplementary Data 3b. We used a multivariate linear
regression model to correct the gene expression estimates of sequencing artefacts
(SAs), collection site (CS), sex (S), age (A) and brain region (BR), yielding an
artefact corrected (AC) data set. The sequencing artefacts used in the model were
‘percent coding bases’, ‘percent utr bases’, ‘percent intronic bases’, ‘percent inter-
genic bases’, ‘median CV coverage’, ‘median 50 to 30 bias’, ‘aligned reads’ and ‘AT
dropout’. The correction formula was (equation 2) as follows assuming we are
correcting for only two sequencing artefacts:

AC¼GeneExpression�ðbSA1�ðSA1�meanðSA1ÞÞÞ� ðbSA2�ðSA2�meanðSA2ÞÞÞ
� ðbA�ðA�meanAÞÞÞ� ðbCS�CSÞ� ðbS�SÞ� ðbBR19�BR19Þ� ðbBR10�BR10Þ

ð2Þ

Combined co-expression analysis. We investigated the entire AC data set to
obtain gene sets or modules that were differentially co-expressed between autism
cases and control brains using WGCNA18. We used WGCNA’s ‘signed’ co-
expression measure to construct the interconnected gene modules to track the sign
of the co-expression information18. Pearson’s correlations were calculated between
13,443 genes in the 104 samples. The WGCNA method transforms the correlation
values to an adjacency matrix using a power function. This power function is
selected based on a fit to scale-free topology, and a threshold of 9 (scale-free R2

of 0.7) was chosen in this study. This power function weights the network by
transforming the pairwise correlation values and computing pairwise topological
overlap (TO) between genes18. TO is a measure of connection strength between
genes. Genes with high TO are clustered into co-expression modules. Each group of
interconnected genes is co-expressed and the module is represented by the ME (the
first principal component of the module). The connectivity of every gene in every
module is represented by correlation to the ME, kME. In this study, this
intramodule strength (kME) was Z0.45 for all the modules.

Once the co-expression modules were created, they were numerically labelled
by module size, with mod1 denoting the largest module. The co-expression analysis
on 13,443 genes from the AC data identified 12 modules, with each module being
represented by its first principal component or eigengene (for example, ME1) for
each sample. We tested the association of each eigengene with case–control status
using a univariate linear mixed regression model, with a random intercept term to
account for the correlation among multiple samples derived from the same
individual. No additional variables are included in the analysis, as the modules
were constructed using the AC data (described above). The multiple test correction
threshold using the Bonferroni method was 4.0� 10� 3. The permutation
threshold, Po2.0� 10� 3, was determined by permuting case–control labels
(n¼ 100 permutations) for the eigengene values and re-running the regression
analysis. The fifth lowest P value was deemed as the study-wide empirical threshold
for Po0.05.

Most of the 13,443 genes were clustered into mutually exclusive co-expressing
modules. However, 5,075 genes were assigned into the predefined mod0, which is
reserved for non-module genes. All 13,443 genes and their module membership
along with the correlation of the genes to each module (kME) are tabulated in
Supplementary Data 10. The Pearson’s correlation between modules is shown in
Supplementary Data 14, and the robustness of correlations was assessed using
bootstrap with replacement analysis.

Stratified co-expression analysis. We investigated the global similarity in
transcriptome organization in the autism case and control brains by constructing
signed networks for the autism case and control brains separately (power function
threshold of 9). The construction of the signed networks separately for cases and
controls identified 18 modules for each. We utilized the module preservation
statistic Zsummary50, described in the ‘modulePreservation’ R function
implemented in WGCNA, to assess the overlap in network modules obtained from
the autism case and control brain data sets. The Zsummary statistic takes into
account the overlap in module membership, the density (mean connectivity) and
connectivity (sum of connections) patterns of modules. We adopted the
recommended significance thresholds: Zsummary o2 implies no evidence for
module preservation, 24 Zsummary o10 implies weak to moderate evidence, and
Zsummary 410 implies strong evidence for module preservation. Using the
recommended thresholds, we clearly observe that all 18 modules are conserved
between the case and control brains (Zsummary 42, Supplementary Data 9).

GO analysis. We functionally annotated the 12 modules with GO terms. The
enrichment of the GO terms in each of the 12 modules was evaluated based on the
hypergeometric test. To account for false positives, 12 random modules of the same
size were generated 2,000 times, the hypergeometic test was carried out, and the
0.05 FWER was calculated. We have tabulated the GO term enrichment for each
module at FWER¼ 0.05 in Supplementary Data 13a–k.

Gene list enrichment analysis. To help provide insight into the interpretation of
the gene expression data, we compiled gene sets that have been either implicated in
ASD5 or have been designated as markers for specific cell types51–53. The main lists
in this study are provided in Supplementary Data 7, along with sources for each list
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(gene lists are available at http://www.arkinglab.org/resources). We present the
enrichment of each module, with significance calculated based on the
hypergeometric model and implemented in the GeneMerge software package54.
To account for false positives, the 0.05 FWER was calculated as described above.
The enrichment analysis with each module’s P value corresponding to
FWER¼ 0.05 is tabulated in Supplementary Data 12.

Compilation of genetic association genes. As previously discussed with the
single-gene analysis, the genes associated with autism and ID were taken from
numerous sources presented in Supplementary Data 7. The genetic association is
presented as independent but not mutually exclusive lists: (i) 155 genes (ASD
SFARI 2012) were compiled by Parikshak et. al. and are a manually curated set of
candidate genes implicated by common variant association, candidate gene studies,
genes within ASD-associated CNV, and, to a lesser extent, syndromic forms of
ASD. This list from the SFARI AutDB was restricted to genes with strong genetic
evidence by also filtering by the category S (syndromic) and evidence levels 1–4
(1¼ high confidence, 4¼minimal evidence). The ASD SFARI 2012 list excludes
any exome sequencing-implicated RDNV genes; (ii) 235 genes (ASD SFARI 2014)
from the SFARI AutDB database22 (accessed on July 2014). The list was restricted
to genes with strong genetic evidence by filtering by the category S (syndromic) and
evidence levels 1–4 (1¼ high confidence, 4¼minimal evidence); (iii) 197 genes
(ASD SFARI 2014 CV) are a subset of the ASD SFARI 2014 after removing the 896
genes with rare de novo variant from the four whole-exome sequencing
publications9–12; (iv) Pinto et al.33 compiled a list of 124 genes (ASD [Pinto]) that
have been implicated in ASD and was updated from a list provided by Betancur in
2011 (ref. 55). All of the 124 genes have also been implicated in ID. Only autosomal
(AD) or X-linked (XL) genes were included. The genes and loci were included only
if there was independent evidence from other studies46; (v) 896 RDNVs associated
with autism were compiled by Parikshak et al. from four whole-exome sequencing
publications5,7,8,23. (vi) Steinberg et al.36 compiled a list of genes disrupted by de
novo nonsense, frameshift or splice-site point mutations in autism probands that
were obtained from Iossifov et al.5 (59 genes; referred to as ‘I-exomes’) and three
other recent studies by Sanders et al.8, O’Roak et al.7 and Neale et al.23 (65 genes
combined from all three; referred to as ‘SON-exomes’); (vii) A list of genes
disrupted by breakpoints of balanced chromosomal abnormalities (BCAs) observed
in individuals with ASD was obtained from Talkowski et al.56 (32 genes; referred to
as ‘T-BCAs’).

Other gene list compilations. Voineagu et al. identified two co-expression gene
modules that were dysregulated in post-mortem ASD brains, asdM12 (a neuronal
module, enriched for ASD associated genes) and asdM16 (enriched with astrocyte,
activated microglial markers, with functional annotation immune response, but no
enrichment for ASD associated genes)10.

FMRP and its interacting partners (FMRP interacting) implicated with
translational regulation of synaptic proteins35 and shown to be enriched with
diverse class of ASD variants57. In additionally, Steinberg et al.36 demonstrated that
the 832 FMRP-interacting partners, particularly in two modules (represented as
FMRP 1 and FMRP 2), exhibit differential temporal expression: genes in FMRP 1
tend to be specifically upregulated during fetal development, whereas genes in
FMRP 2 were generally upregulated in adolescence and adulthood. Numerous cell
type markers were tested, as presented in Supplementary Data 7 and 12. Finally,
Uddin et al. identified 3,955 exons mapping to 1,744 genes with high expression in
the brain and a low burden of rare mutations, and designate these as ‘brain-critical
exons’25.
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